Voltage Regulator

Dc Power Supply

- All electronic circuits and systems require a stable source of dc voltage and current (or dc power) to operate correctly.

Instructor: Mohammad AL-Jubeh
ENCE

- Transformer: Used to increase or decrease the amplitude of the ac line voltage
- Rectifier: used to convert the ac voltage (zeroaverage value) into either positive and negative pulsating dc.

1) Have- Wave Rectifier
2) Full-Wave Rectifier
a) Center-tapped transformer full-wave Rectifier
b) Bridge full-wave rectifier

- Filter : used to smooth out the pulsating dc roduced by the rectifier by removing its ac ripple contents and passing its dc component (average value)

- Regulator: used to maintain a constant DC output voltage under variations in the load current drawn from the supply and under variation in AC line voltage

To determine the effectiveness of the voltage regulator, we define two indicators
a) Load regulation $=\frac{\Delta V_{o}}{\Delta \mathrm{I}_{L}}$
assuming V_{S} constant
b) Line regulation $=\frac{\Delta V_{O}}{\Delta \mathbf{v}_{S}}$ assuming R_{L} fixed

Voltage Regulator

- An ideal power supply maintains a constant voltage at its output terminal , no matter what current it drawn from it .
- The output voltage of a practical power supply changes with load current.
- One measure of power supply performance is called percent voltage regulation.

$$
V r=\frac{V N L-V F L}{V F L} \times 100 \%
$$

Voltage Regulator

Simple Voltage Regulator

$I z(\max)=250-0=250 m A ; V z=12.5 \mathrm{~V}$
$\Delta V o=\Delta V z=12.5-11.6=0.9 \mathrm{~V}$

$$
P d=V z I z
$$

$P d$, max $=V z($ max $) I z($ max $)$
$P d, \max =12.5 \times 250=3.125$ watt

Voltage Regulator

Simple Voltage Regulator

Vr= 7.6\%

Voltage Regulator

Simple Voltage Regulator

2. The Zener power dissipation will increase as IL decreases.

Transistorized Voltage regulator

> Supply
> $I_{C} \uparrow, V_{o} \uparrow$

Example

Calculate the output voltage and Zener current for $R_{L}=1 \mathrm{k} \Omega$.
Solution:

$$
\begin{aligned}
& V_{o}=V z-V B E=12-0.7=11.3 \mathrm{~V} \\
& I E=11.3 / 1 \mathrm{~K}=11.3 \mathrm{~mA} \\
& \mathrm{Iz}=I 1-I B \\
& I 1=(20-12) / 220=36 \mathrm{~mA} \\
& I B=I E / B+1 \\
& I z=35.78 \mathrm{~mA}
\end{aligned}
$$

Types of Regulators

Types of Regulator

Types of Regulator

- Fundamental classes of voltage regulators are linear regulators and switching regulators.
- Two basic types of linear regulator are the series regulator and the shunt regulator.
- The series regulator is connected in series with the load and the shunt regulator is connected in parallel with the load.

Series and shunt Regulators

- The purpose of a regulator is to eliminate any output voltage variation that might occur because of
- changes in load currents,
- changes in ac line Voltage,
- or changes in temperature.
- It monitors the output voltage and generates feedback signal that automatically Increases or decreases the supply voltage as necessary to compensate for any tendency of the output voltage to change.

Voltage Regulator

Series Regulators

Control element: is a device whose operating state adjusts as necessary to maintain a constant Vo.

It is in series path between Vi and Vo

Voltage Regulator

Series Regulators

Voltage Regulator

Series Regulators
An Op-amp used in series voltage regulators

$$
\begin{gathered}
V(-)=\frac{R \mathbf{2}}{R 1+\boldsymbol{R 2}} V o \\
V(+)=V \boldsymbol{Z} \\
V(-)=V(+) \\
V o=V Z\left(1+\frac{R 1}{R \mathbf{2}}\right)
\end{gathered}
$$

Operation:

$$
\begin{aligned}
V o^{\prime} & =A d V d \\
V o^{\prime} & =A d\left(V z-\frac{R 2}{R 1+R 2} V o\right) \\
V B E & =V o^{\prime}-V o
\end{aligned}
$$

Assume Vo $\downarrow, V o^{\prime} \uparrow$, VBE \uparrow, IE \uparrow , Vo 个

Example

Determine the output voltage for the regulator below.

$$
V_{o}=\left(1+\frac{R_{2}}{R_{3}}\right) V_{z} \longrightarrow V_{o}=\left(1+\frac{10 \mathrm{k}}{10 \mathrm{k}}\right) 5.1=10.2 \mathrm{~V}
$$

Voltage Regulator

An Op-amp used in series voltage regulators

Current Limiting:

$R s c=\frac{0.7}{I L(\max)}$

- In normal operation

Q2 is off (VBE2<0.7V)
$\mathrm{IB} 1=\mathrm{Io} ; \mathrm{IL}=\mathrm{IE}=\beta$.Io
-when IL=IL(max)
$\mathrm{VBE} 2=0.7 \mathrm{~V}$
Q2 turns on;
Io=IB1 +IC 2

Q1 will conduct less current

Voltage Regulators example

- Given the following series voltage regulator
- 1) Complete the design of the following voltage regulator (Find of $R 1, R 2$ and $R 3$) assuming that the voltage across the load resistor R_{L} is equal to 12 V . Assume $\mathrm{Iz}(\mathrm{min})=2 \mathrm{~mA}$.
- 2)Show how to modify the circuit to limit the load current to 1A.
- 3)Find the output voltage for the modified circuit of part 2) when the load resistor $R_{L}=100 \Omega$ and when $R_{L}=8 \Omega$.
-4) Choose a transistor with suitable power rating

1) Complete the design of the following voltage regulator (Find of R1, R2 and R3) assuming that the voltage across the load resistor R_{L} is equal to 12 V . Assume $\mathrm{Iz}(\mathrm{min})=2 \mathrm{~mA}$.
$V_{o}=\left(1+\frac{R_{1}}{R_{2}}\right) V_{Z}=12 \mathrm{~V}$
$\therefore \frac{\mathrm{R} 1}{\mathrm{R} 2}=\frac{V_{O}}{V_{Z}}-1=\frac{12}{4}-1=2$

\square choose $\mathrm{R}_{1}=20 \mathrm{k} \Omega$

$$
\therefore R_{2}=10 \mathrm{k} \Omega
$$

$$
\mathrm{I}_{\mathrm{Z}}>\mathrm{I}_{\mathrm{Z}(\text { Min })}=\frac{\mathrm{V}_{\mathrm{IN}(\text { Min })}-\mathrm{V}_{\mathrm{Z}}}{\mathrm{R}_{3}} \quad \square \quad \begin{aligned}
& \mathrm{R}_{3} \leq \frac{\mathrm{V}_{\mathrm{IN}(\text { Min })}-\mathrm{V}_{\mathrm{Z}}}{\mathrm{I}_{\mathrm{Z}(\mathrm{Min})}} \\
& \mathrm{R}_{3} \leq \frac{20-4}{2 \mathrm{~mA}}=8 \mathrm{k} \Omega
\end{aligned}
$$

Voltage Regulators

2)Show how to modify the circuit to limit the load current to 1A.

The change for current limit is done
by adding Q 2 and Rsc as shown
$\& \mathrm{R}_{\mathrm{SC}}=\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{L}(\text { Max })}}=\frac{0.7 \mathrm{~V}}{1 \mathrm{~A}}=0.7 \Omega$
3)Find the output voltage for the modified circuit of part 2) when the load resistor R_{L} $=100 \Omega$ and when $R_{L}=8 \Omega$.

For $R_{L}=100$ ohm, $\mathrm{Vo}=12 \mathrm{~V}$, then $\mathrm{I}_{\mathrm{L}}=\frac{12 \mathrm{~V}}{100 \Omega}=0.12 \mathrm{~A}$
which is smaller than $\mathrm{I}_{\mathrm{L}(\max)}$,
$\therefore \mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ and is not affected by the current limit circuit
For $\mathrm{R}_{\mathrm{L}}=8 \mathrm{ohm}, \mathrm{Vo}=12 \mathrm{~V}$, then $\mathrm{I}_{\mathrm{L}}=\frac{12 \mathrm{~V}}{8 \Omega}=1.5 \mathrm{~A}$
which is bigger than $I_{L \text { (max) }}$, and the current limit circuit
limits the current to the maximum allowable value which is 1 A
$\therefore \mathrm{V}_{\mathrm{o}}=I_{L(M a x)} * R_{L}=1 A * 8 \Omega=8 \mathrm{~V}$
4) Choose a transistor with suitable power rating

$$
I_{C} \approx I_{E}
$$

$$
\mathrm{P}_{\mathrm{C}, \text { MAX }}=\mathrm{V}_{\mathrm{CE}(\mathrm{MAX})} * \mathrm{I}_{\mathrm{C}(\mathrm{MAX})}
$$

$$
\mathrm{V}_{\mathrm{CE}(\mathrm{MAX})}=V_{I N(M A X)}-V_{O(M I N)}=25-8=17 \mathrm{~V}
$$

$$
I_{E(M A X)}=I_{R 1}+I_{L(M A X)}=\frac{V_{Z}}{R_{2}}+I_{L(M A X)}
$$

$$
=\frac{4 \mathrm{~V}}{10 \mathrm{k} \Omega}+1 \mathrm{~A}=1.0004 \mathrm{~A}
$$

$$
\mathrm{P}_{\mathrm{C}, \mathrm{MAX}}=17 \mathrm{~V} * 1.0004 \mathrm{~A}=17.0068 \mathrm{~W}
$$

Voltage Regulator

Unregulated

Shunt Regulators

- The control element maintains a constant load voltage by shunting more or less current from the load
- When the load voltage decrease, the control element shunt less current

Shunt Regulators

An Op-amp used in Shınt voltase resolators

$$
V o=V Z\left(1+\frac{R 1}{R 2}\right)
$$

Operation:

Vop $=A d V d$
$V o p=A d\left(\frac{R 2}{R 1+R 2} V o-V z\right)$
IF VO $\downarrow, \mathrm{V}(+) \downarrow, \operatorname{Vop} \downarrow$, VBE \downarrow

$$
\mathrm{VBE}=\mathrm{Vop}
$$

\therefore The transistor conduct Less, Ic $\downarrow, I L \uparrow V o \uparrow{ }^{\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{s}\left(\mathrm{e}^{\frac{\mathrm{VBE}}{V_{\mathrm{T}}}}-1\right) ~}$

Current Limiting

Instructor: Mohammad AL-Jubeh
ENCE

IC Voltage Regulator

Voltage Regulator
Three Terminal Circuit Regulators

1- Fixed voltage regulator
a-78xx
7805..................... 5 V
7812................... 12 V

7815
15V
b- 79xx
7905............. -5 V
7912.............. -12 V
7915.............. -15V

Instructor: Mohammad AL-Jubeh
ENCE

Fixed Voltage Regulator

Positive-Voltage Regulators in the 78XX Series

IC Part	Output Voltage (V)	Minimum $V_{i}(V)$
7805	+5	+7.3
7806	+6	+8.3
7808	+8	+10.5
7810	+10	+12.5
7812	+12	+14.5
7815	+15	+17.7
7818	+18	+21.0
7824	+24	+27.1

Vin must be higher than Vo by at least $\mathbf{2 V}$ for proper operation of the voltage regulator

Fixed Voltage Regulator

Negative-Voltage Regulators in the 79XX Series

IC Part	Output Voltage (V)	Minimum $\mathbf{V}_{\mathbf{i}}(\mathbf{V})$
7905	-5	-7.3
7906	-6	-8.4
7908	-8	-10.5
7909	-9	-11.5
7912	-12	-14.6
7915	-15	-17.7
7918	-18	-20.8
7924	-24	-27.1

Voltage Regulator

Three Terminal Circuit Regulators

Dc Power Supply

Voltage Regulator

Three Terminal Circuit Regulators
Dual Polarity Dc Power Supply

Instructor: Mohammad AL-Jubeh
ENCE

Voltage Regulator

Changing the fixed Voltage Regulator to adjustable

$$
\begin{aligned}
& V o=V_{R E G}+R_{2} I_{2} \\
& V o=V_{R E G}+R_{2}\left(I_{1}+I_{Q}\right) \\
& I_{1}=\frac{V_{R E G}}{R_{1}} \\
& \therefore V o=V_{R E G}\left(1+\frac{R_{2}}{R_{1}}\right)+R_{2} I_{Q} \\
& I_{Q} \text { is in milliampere and change with temperature }
\end{aligned}
$$

Example

- Find the minimum and maximum output voltage (Vo) for the following IC voltage regulator. Note that R2 is a variable resistor that can be varied from 0 to $3 \mathrm{k} \Omega$
- What is the range of values of Vin required for proper operation of the circuit
- What is the power dissipation of the LM7808 when $\mathrm{Vo}=\mathrm{Vo}(\mathrm{min})$ and Vin=Vin(max) and load current $=0.25 \mathrm{~A}$

Find the minimum and maximum output voltage (Vo) for the following IC voltage regulator. Note that $\mathbf{R 2}$ is a variable resistor that can be varied from 0 to $3 \mathrm{k} \Omega$

$$
\begin{aligned}
& \therefore V O=V_{R E G}\left(1+\frac{R_{2}}{\boldsymbol{R}_{1}}\right)+\boldsymbol{R}_{\mathbf{2}} \boldsymbol{I}_{\boldsymbol{Q}} \\
& \mathrm{V}_{\mathrm{O}(\mathrm{MIN})}=\mathrm{V}_{\mathrm{REG}}=8 \mathrm{~V}\left(\text { when } \mathrm{R}_{2}=0 \Omega\right) \\
& \mathrm{V}_{\mathrm{O}(\mathrm{MAX})}=\frac{\mathrm{V}_{\mathrm{REG}}}{\mathrm{R}_{1}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)+\mathrm{I}_{\mathrm{Q}}\left(\mathrm{R}_{2}\right) \\
& =\frac{8 \mathrm{~V}}{2 \mathrm{k} \Omega}(2 \mathrm{k} \Omega+3 \mathrm{k} \Omega)+3 \mathrm{~mA} \cdot(3 \mathrm{k} \Omega) \\
& =(4 \mathrm{~mA}) \cdot(5 \mathrm{k} \Omega)+9 \mathrm{~V}=29 \mathrm{~V}\left(\mathrm{when} \mathrm{R}_{2}=3 \mathrm{k} \Omega \mathrm{k}\right)
\end{aligned}
$$

What is the range of values of VIN required for proper operation of the circuit?
Vin must be higher than Vo by at least 2 V

Power Dissipation of LM7808:
$\mathrm{P}_{\text {(LM7808) }}=\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{O}}\right) * \mathrm{I}_{\mathrm{O}}=(31-8) * 0.254=5.842 \mathrm{~W}$

Adjustable-Voltage Regulator

Adjustable-Voltage Regulator

- Voltage regulators are also available in circuit configurations that allow to set the output voltage to a desired regulated value.
- The LM317 is an example of an adjustable-voltage regulator, can be operated over the range of voltage from 1.25 to 35 V .

Voltage Regulator

2- Adjustable Voltage regulator

$$
\begin{aligned}
& I Q=50 u A \rightarrow 100 u A \quad I_{A d j}=I_{Q} \\
& I \mathrm{I}, \text { max }=1.5 \mathrm{~A} \\
& V_{R E G}=1.25 \mathrm{~V} \\
& V o=V_{R E G}+R_{2} I_{2} \\
& V o=V_{R E G}+R_{2}\left(I_{1}+I_{Q}\right) \\
& I_{1}=\frac{V_{R E G}}{R_{1}} \quad \therefore V o=V_{R E G}\left(1+\frac{R_{2}}{R_{1}}\right)+R_{2} I_{Q}
\end{aligned}
$$

IC REGULATOR WITH BOOSTER CURRENT

IC regulators are limited to a maximum allowable current before shutting down. The circuit shown uses an external pass transistor to increase the maximum available load current When I_{O} is less than I_{O}, max , VEB1 <0.7 V So that the Q1 is OFF When I_{O} is equal to $I_{o}, \max , \mathrm{VEB1}=0.7 \mathrm{~V}$ So that the Q 1 is on and $I_{L}=I_{O}, \max +I_{C 1}-I_{1}$

Previous slide shows that the external transistor is not protected from excessive current, such as would result from shorted output. An additional current-limiting circuit (Q2 and Rs2) can be added to protect Q1 from excessive current and possible burn out.

When $I_{C 1}$ is equal to $I_{C 1}, \max , \mathrm{VBE} 2=0.7 \mathrm{~V}$ So that the Q 2 is on and $I_{L}=I_{C 1}, \max +I_{O 1}, \max +I_{E 2}-I_{1}$

Types of Voltage Regulators

- Linear Power Supply.

- Used power devices that operated at linear/active region.
- Dissipates more power.

■ Non-Linear Power Supply.

- Used power devices that operated at saturation and cutoff alternately.
- Dissipates less power.
- Also named as switching power supply or switching regulator.

Voltage Regulator

Voltage Regulator

Switching Mode regulator

The fundamental component of a switching regulator is a pulse width modulator: P.W.M
P.W.M produces a train of rectangular pulses having width that are proportional to the Device's input.

Voltage Regulator

Switching Mode regulator

Voltage Regulator Pulse width Modulator Circuit (P.W.M)

When $\mathrm{V}(+)>\mathrm{V}(-) ; \mathrm{Vo}(\mathrm{t})=\mathrm{V}$ sat $=\mathrm{V}$

When $\mathrm{V}(+)<\mathrm{V}(-) ; \mathrm{Vo}(\mathrm{t})=-\mathrm{Vsat}=0$

Oscillator

$$
\text { When } \mathrm{V}(+)<\mathrm{V}(-) ; \mathrm{Vo}(\mathrm{t})=-\mathrm{V} \text { sat }=0
$$

Voltage Regulator

Pulse width Modulator Circuit (P.W.M)

$$
\begin{aligned}
V o, d c & =\frac{1}{T} \int_{0}^{T} V o(t) d t \\
V o, d c & =\frac{1}{T}(V . T h) \\
V o, d c & =\frac{T h}{T} \cdot V
\end{aligned}
$$

\therefore The dc value of a pulse train is

$$
V o, d c=D . V
$$ directly proportional to its duty cycle

Vo $\downarrow, \operatorname{Vop} \uparrow$, Duty cycle \uparrow, Vo \uparrow

Voltage Regulator

Pulse width Modulator Circuit (P.W.M)

- A switching mode regulator uses a pulse width modulator to produce a pulse train whose duty cycle is automatically adjusted as necessary to increase or decrease the dc values of the train
- If the load voltage Vo tends to fall, then the output of the Op Amp increases and a larger voltage is applied to the pulse width modulator
- It therefore produces a pulse train having a larger duty cycle.
- The pulse train switches Q1 on and off with a greater duty cycle, so the dc values of the load voltage raise.

$0-\square \square \square$

